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Abstract

This paper reconciles the debates on carbon return estimation by introducing the con-
cept of equity duration. We demonstrate that emission level and emission intensity
yield divergent results for green firms, driven by inherent data problems. Our findings
reveal that equity duration effectively captures the multifaceted effects of carbon tran-
sition risks. Regardless of whether carbon transition risks are measured by emission
level or emission intensity, brown firms earn lower returns than green firms when the
equity duration is long due to discount rate channel. This relationship reverses for
short-duration firms conditional on the near-term cash flow. Our analysis underscores
the pivotal role of carbon transitions’ multifaceted effects on cash flow structures in
understanding the pricing of carbon emissions.
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1. Introduction

Understanding how carbon transition risks are priced in financial markets has become a

critical question amid growing climate concerns and regulatory pressures. The existing

literature offers mixed evidence. A series of influential papers by Bolton and Kacperczyk

(2021, 2023) (hereafter BK), document a positive association between stocks’ realized returns

and carbon emission levels. Consistent with theoretical predictions, these results suggest

that brown firms bear a high cost of capital and that financial markets price in carbon

transition risks. Conversely, another stream of studies finds that green firms outperform

brown firms, indicating that investors demand more green assets to hedge against increasingly

heightened climate concerns and consumers’ preferences turn green (Pastor, Stambaugh, and

Taylor, 2022; Pedersen, Fitzgibbons, and Pomorski, 2021; Zhang, 2024). Additionally, some

research reports an insignificant relationship between stock returns and carbon emissions,

depending on the sample and empirical methods used (Aswani, Raghunandan, and Rajgopal,

2024; Zhang, 2024). These conflicting findings primarily stem from debates over empirical

methodologies: whether to scale carbon emissions or not, the reliability of disclosed versus

estimated carbon data, and the forward-looking information embedded in emissions.

This paper aims to reconcile the debates by revisiting the methodological issues and

providing new insights into the pricing of carbon emission risks through the lens of economic

fundamentals. Our analyses reveal that the emission level and the emission intensity diverge

significantly in green firms, leading to mixed evidence on carbon returns. This divergence

stems from inherent data issues in the emission data, suggesting that refining empirical

methods without improving emission data quality cannot fully resolve the debates.

We propose a new perspective—equity duration—to reconcile the debates on carbon

returns. Equity duration captures the sensitivity of stock prices to the structure of future

cash flows (Dechow, Sloan, and Soliman, 2004). Why does equity duration matter for carbon
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returns? We argue that the existence of a carbon premium depends on how carbon transition

risks affect the structure of firms’ future cash flows and how these future cash flows are

translated into today’s stock prices.

First, upcoming policies related to net-zero transitions, such as carbon taxes and fossil

fuel restrictions, may dramatically reduce (improve) short-run cash flows of brown (green)

firms. Similarly to the argument of Dechow et al. (2021), the stock prices of equally affected

firms react more to such events when the duration of the equity is short because a short

duration of the equity implies that the price of the stock mainly reflects the near-term cash

flows of the firms. Second, green stocks perform better when investors’ preferences and

consumers’ tastes turn green. This transition can be driven by hedging against climate risks

and the spread of green values. Hedging requires the cash flows of green assets to cover distant

future risks (Pastor, Stambaugh, and Taylor, 2021). Profits from the production of green

products increase with the progress of the ongoing green transition (Besley and Persson,

2023). Both explanations emphasize the role of distant-term cash flows in explaining the

green premium or negative carbon returns. Therefore, we hypothesize that carbon transition

risks are positively associated with stock returns for firms with short equity duration and

negatively associated for firms with long equity duration.

To address the methodological debates over carbon returns, we directly compare the

portfolio composition when sorting the sample by emission level versus emission intensity.

We find that firms in the bottom 10 percent of emission intensity are spread across all

deciles of emission level, while both measures identify similar top emitters. Our analysis

further shows that a one-standard-deviation decrease in emission level corresponds to an

10.8 percent increase in the absolute value of the difference in the percentile ranking for the

same firm using emission level and emission intensity. These divergences in defining green

firms contribute to discrepancies in return spread estimates between brown and green firms.

Which measure is preferred for estimating carbon returns: emission level or emission
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intensity? We argue that both have merits and drawbacks. Several studies recommend emis-

sion intensity as a preferred measure because it removes financial fundamentals embedded

in emissions, especially those estimated by data vendors, and better captures environmental

performance (Aswani, Raghunandan, and Rajgopal, 2024; Nordhaus, 2019; Zhang, 2024).

We probe into the difference between vendor-estimated and firm-disclosed emissions and

find that vendor-estimated emissions overstate the positive relation between sales and emis-

sions, especially for low-emission firms. Vendor-estimated emissions are 6.7 percent more

sensitive to sales than firm-disclosed emissions. In the bottom thirty percent of emitters,

this wedge in emissions-sales sensitivity between estimated and disclosed emissions expands

to 62.6% (In comparison, this gap at the top thirty percent is only -19.9%.). These findings

imply that emission intensity captures estimation biases in addition to teasing out financial

fundamentals.

That being said, we do not conclude that emission level is a preferred measure of carbon

transition risks to emission intensity, or vice versa. Both measures are plagued by data issues

such as estimation biases and noise from financial fundamentals, making them inconclusive

for capturing carbon transition risks at least in certain situations. Reducing emissions is

the ultimate goal of the net-zero transition, and therefore the emission level is a direct

proxy for carbon transition risk exposure (Bolton and Kacperczyk, 2024). However, emission

reduction is de facto a reallocation of a smaller total emission quota across all firms. For

example, Microsoft’s emissions increased by 30 percent in 2023 due to AI-related operations,

comparable to Alaska Air’s carbon emissions1. Should we consider Microsoft and Alaska

Air similarly exposed to carbon transition risks? We believe not: emissions used to advance

AI technology are almost necessary to boost productivity but Alaska Air is unlikely to be.

Similarly, start-up firms that have not yet started to generate significant revenues may have

a high emission intensity because of the fixed emissions related to basic operations and R&D

1In 2020, the carbon emissions of Microsoft and Alaska Air were 4,220,545 metric tons and 4,154,003 metric
tons respectively, while their carbon intensities were 29.51 and 1164.89 (tons CO2e/USD m.) respectively.
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activities, even if these firms may be developing green technologies.

We then turn to reconcile the debates on the carbon premium from the perspective of

implied equity duration. Our analyses confirm that equity duration effectively captures the

multifaceted effects of carbon transition risks on firms. Both emission level and emission

intensity are negatively associated with duration, indicating that the distant-term cash flows

of carbon-dependent firms are heavily discounted in their current stock prices. Equity du-

ration also reflects different aspects of carbon transition risks. Holding carbon emissions

constant, equity duration increases with a firm’s exposure to climate change opportunities

but decreases with its exposure to climate change regulations. These findings corroborate

the idea that upcoming carbon regulations will impact firms’ near-term cash flows and im-

pose risks on their future cash flows. Conversely, opportunities related to carbon transition

imply growth, which translates to a longer equity duration.

We next estimate the carbon premium conditional on equity duration. We show that

brown firms, both in carbon level and intensity, earn significantly lower returns than green

firms for long-duration firms (ranks in the top 30th percentile in the cross-section). Com-

pared with a shorter-duration firm, a one-standard-deviation decrease in a long-duration

firm’s carbon emission level (intensity) corresponds to a 0.50 percent (0.38 percent) more

increase in monthly stock returns. We also find that the carbon premium becomes positive

or insignificant when equity duration falls in the bottom 30th percentile in the cross-section.

These findings remain robust when controlling for sales information, forward-looking bias,

and estimation biases.

Moving to portfolio analyses, the value-weighted carbon return spreads per month are

-0.37 percent and -0.42 percent for portfolios of long-duration firms sorted by emission lev-

els and emission intensity, respectively. The negative carbon return remains significantly

negative but with smaller magnitudes after adjusting for the Fama-French five factors plus

momentum.
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The asset pricing evidence confirms that implied equity duration can reconcile the mixed

findings on carbon returns. Regardless of whether carbon transition risks are measured by

emission level or emission intensity, negative carbon returns exist in cross-sections with long

equity duration, while carbon returns are zero or positive in cross-sections with short equity

duration.

We further explore the mechanism of the duration-driven carbon premium through the

discount rate and cash flow channels. Our findings indicate that in long-duration stocks, the

pricing of carbon emissions is contingent on the discount rate, with brown firms exhibiting

higher implied costs of capital and consequently lower stock returns. In contrast, for short-

duration stocks, the pricing of carbon emissions is influenced by near-term cash flows, where

brown firms demonstrate higher expected cash flows, leading to higher stock returns.

Previous studies have identified several issues in empirical choices that potentially lead

to inaccurate carbon return estimates, including data vendors’ estimation biases, funda-

mental information embedded in emissions (Matsumura, Prakash, and Vera-Munoz, 2014),

and forward-looking bias in the emission data. These recommend using emission intensity

(Aswani, Raghunandan, and Rajgopal, 2024; Zhang, 2024; Atilgan et al., 2023). Our paper

revisits the empirical methods in carbon return estimation and highlights that while scaling

emissions by sales removes some fundamental information, it exacerbates vendors’ estima-

tion biases. These inherent data problems make it challenging to reconcile the debates on

carbon returns by simply refining empirical methods. Our interests diverge significantly: we

emphasize the role of equity duration, a measure of the structure of cash flows and discount

rate risks, in understanding the pricing of carbon transition risks.

The paper further explores the application of equity duration. Weber (2018) establishes

that stocks with high cash flow duration yield significantly lower returns compared to their

short-duration counterparts in cross-sectional analysis. Gormsen and Lazarus (2023) utilizes

equity duration to elucidate major equity factors—such as value, profitability, and invest-
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ment—that generate the most immediate cash flows. Gormsen (2021) examines the time-

varying structure of equity terms and its countercyclical nature. Dechow et al. (2021) show

that equity duration can capture the sensitivity of equity securities to unforeseen macroeco-

nomic developments, including pandemics and impending carbon regulations, which dispro-

portionately affect short-term cash flows. This paper extends these insights by demonstrating

that equity duration can also effectively distinguish long-term carbon transition risks.

The rest of the paper proceeds as follows. Section 2 discusses the data and measurement

employed in this study. Section 3 describes the divergence between carbon emission level

and intensity and the potential estimation bias. Section 4 presents the duration conditional

carbon-return relationship. Section 5 concludes.

2. Data and Measurement

In this section, we describe the data and measurements employed in this work, which in-

clude corporate carbon emissions from Trucost, firms’ financial and market characteristics

from CRSP and Compustat, analyst forecast from I/B/E/S, and climate risk exposure from

Sautner, van Lent, Vilkov, and Zhang (2023).

2.1. Data on corporate carbon emissions

We obtain firm-level carbon emissions in tons of carbon dioxide equivalent (tCO2e) from

S&P Trucost. We study Scope 1 and Scope 2 emissions. Scope 1 emissions cover emissions

from fossil fuels used in production from plants owned or controlled by the firm. Scope

2 includes indirect emissions from the generation of purchased heat, steam, and electricity

consumed by the firm. Henceforth, we focus our analysis on the sum of Scope 1 and Scope

2 carbon emissions as greenness measure for the spacious concern based on a series of paper

(Griffin, Lont, and Sun, 2017; Pedersen, Fitzgibbons, and Pomorski, 2021). Our main results

are robust when investigating them separately.
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Trucost collects environmental performance information from annual reports, sustain-

ability reports, websites, and other public sources. Reported data is standardized according

to best practice guidelines for comparability, and gaps are filled with modeled values. Tru-

cost does not directly categorize carbon emissions data into “estimated” and “disclosed”

categories, but it categorizes the sources of data into 29 different values. Following Aswani,

Raghunandan, and Rajgopal (2024) and Atilgan et al. (2023), we first classify these into

three types: (i) fully estimated, (ii) partially estimated, and (iii) directly disclosed. Next,

we group (i) and (ii) as estimated, and (iii) as disclosed.

Following the literature (Matsumura, Prakash, and Vera-Munoz, 2014; Ardia et al., 2023;

Bolton and Kacperczyk, 2021, 2023; Zhang, 2024; Aswani, Raghunandan, and Rajgopal,

2024), we mainly focus on two important carbon metrics: total level of carbon emission and

carbon intensity. Total carbon emission level is defined as the sum of Scope 1 and Scope 2

emissions. Carbon intensity is calculated as the ratio of total carbon emissions to year-end

sales2.

2.2. Measuring carbon divergence

As highlighted in the previous discussion, carbon level and carbon intensity can generate

very distinct implications for greenness. Some of the most serious carbon producers could be

regarded as green firms from the perspective of carbon intensity. To quantify the difference

in measuring greenness with the emission level and the emission intensity, we construct a

rank difference metric. Let pleveli,t and pintensityi,t represent the percentiles of carbon level and

intensity for firm i in year t, respectively. We define the divergence for each firm in each

year as:

(1) Divergencei,t = |pleveli,t − pintensityi,t |,
2In unreported tables, we also test our main results by Scope 1 and Scope 2 emission separately. Our

main results are robust a for both cases.
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where the function |x| denotes the absolute value of x, and Divergencei,t represents the

absolute difference between the percentiles of carbon level and carbon intensity, illustrating

how differently these two measures capture greenness.

2.3. Measuring cash flow duration

Due to the challenges we faced in measuring carbon emissions (Atilgan et al., 2023; Aswani,

Raghunandan, and Rajgopal, 2024; Zhang, 2024), we argue that one potential solution is to

jointly study carbon emissions and their underlying influence on firms’ future cash flows in a

transitioning economy. To comprehensively capture a firm’s average cash flow structure, we

employ the measure of implied equity duration developed by Dechow, Sloan, and Soliman

(2004) and subsequently studied by Weber (2018). In a similar spirit, Dechow et al. (2021)

apply equity duration to study the pandemic shutdown’s influence on short-term cash flows.

In this study, we apply equity duration to capture cash flow structure over a longer horizon

during the carbon-neutrality transition.

The key challenge in estimating the duration of equities is determining the unknown

future cash flows of equities. Dechow, Sloan, and Soliman (2004) propose a two-step approach

to tackle this problem. First, future cash flows can be divided into a finite period component

and a level perpetuity after the finite period. Using past financial data along with an

autoregressive model yields predictions of future profitability and growth on the book value

of equities, where cash flows can be derived with a clean surplus assumption. Second, the

implied equity duration is obtained by plugging the estimated cash flows and an assumed

discount rate into the bond duration formula.

In execution, we impute cash flows CF using the clean surplus relation:

CFi,t+s = Earningsi,t+s −∆BEt

= BEt−1(ROEt − gt),

(2)
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where ROEt is return on equity and gt is growth in book equity. Following Dechow, Sloan,

and Soliman (2004) and Weber (2018), we model ROE and g as first-order autoregressive

processes and assume they have persistent coefficients of 0.39 and 0.21 and long-run averages

of 12 percent and 6 percent, respectively. After calculating the cash flows, implied equity

duration is calculated with the following equation:

(3) Duri,t =

∑T
s=1 s× CFi,t+s/(1 + r)s

Pi,t

+ (T +
1 + r

r
)×

Pi,t −
∑T

s=1CFi,t+s/(1 + r)s

Pi,t

,

where T is the number of finite periods. Following Weber (2018) and Dechow et al. (2021),

we use a finite forecast horizon T of 15 years and a discount rate r of 12 percent. Pi,t is the

current market value of equity. The firm-level equity market and accounting data are taken

from CRSP and Compustat, respectively.

2.4. Measuring implied cost of capital and cash flow expectation

To investigate whether the duration-driven carbon premium is attributed to the discount

rate channel or the cash flow channel, we further estimate the stock-month level discount

rate and expected cash flow as follows. Data of analyst forecast is from I/B/E/S.

2.4.1. Implied cost of capital

The implied cost of capital (ICC) is the discount rate that equates the stock’s current

valuations to the present value of expected future cash flows. We compute each stock’s ICC

following Mohanram and Gode (2013); Eskildsen et al. (2024); Gormsen and Huber (2024),

which consider four accounting measures comprehensively: the residual income models of

Gebhardt, Lee, and Swaminathan (2001) and Claus and Thomas (2001) and the dividend

discount models of Easton (2004) and Ohlson and Juettner-Nauroth (2005). According to

Lee, So, and Wang (2021), ICC is a noisy predictor; thus, we select the median of the four

ICC measures above for each stock.

9



2.4.2. Cash flow expectation

We base our analysis on analyst forecasts as a proxy for future expected cash flows. We

define cash flow expectations of firm i at time t as follows:

(4) CF Forcasti,t =
FY 1i,t − FY 0i,t

Pricei,t−1

where FY 1 denotes one-year-ahead annual earnings-per-share (EPS) forecasts. FY 0 is the

actual EPS value from I/B/E/S in fiscal year t. We use the first median value of analyst

forecasts made after the earnings announcement of fiscal year t. According to Sloan and

Wang (2023), many companies report negative base year EPS, and earnings growth rates

cannot be calculated for a subset of firms with negative base year earnings. Therefore, we

calculate the change in EPS forecasts divided by the firm’s lagged price.

2.5. Sample construction and descriptive statistics

Our primary sample period spans from 2005 to 2020 mainly due to the availability of carbon

emission data. We include all U.S. common stocks listed on the NYSE, AMEX, and NAS-

DAQ with available carbon emission information and exclude firms in the financial (6000 ≤

SIC < 7000) and utilities (4900 ≤ SIC < 5000) industries. Following Zhang (2024), we use

the latest carbon emission and accounting data based on their release date to ensure the

carbon emission is known before the stock return.

We report summary statistics in Table I. For ease of interpretation, all independent

variables have been standardized to zero mean and unit variance in all regressions. To

mitigate the influence of outliers, we winsorize all variables at the 1 percent level.

[Insert Table I around here]

Panel A presents the summary statistics of firm-level carbon measures. It shows that

10



during 2005-2020, U.S. firms emit a mean of 11.27 log tCO2e in the sum of Scope 1 and

Scope 2, and a median of 11.40. The mean of carbon intensity is 3.94 log tCO2e per million

U.S. dollars, and the median is 3.72.3 The mean divergence of 0.20 indicates that the average

absolute difference between the percentiles of emissions level and intensity for each company

per year is 20 percent. Over 25 percent of firms will have at least 31 percent different

environmental performance by carbon level and intensity. It is very likely that a firm regarded

as brown in terms of carbon level is actually green in terms of intensity, and vice versa.

This divergence could generate significant impacts when financial economists apply portfolio

sorting and other professionals to assess firms’ actual environmental performance. Carbon

emissions level, intensity, and carbon divergence are persistent, with annual autocorrelations

of 0.98, 0.97, and 0.92, respectively. The persistent divergence is a mechanical result of the

persistence of carbon level and intensity, indicating that the divergence between these two

carbon measures is unlikely to disappear.

For equity duration in Panel B, the average payoff horizon implied by stock prices is

about 20.26 years. An average standard deviation of four years hints at substantial cross-

sectional heterogeneity in this variable. Panel C reports cross-sectional return variables

that include monthly stock return, implied cost of capital (ICC), cash flow forecast, size,

book-to-market ratio (BM), return on asset (ROA), sales, investment (INV), earnings per

share (EPS) growth (∆EPS), sales growth (∆Sales), market beta, momentum, and volatil-

ity. Panel D shows climate risk exposure from Sautner, van Lent, Vilkov, and Zhang (2023).

CCExposureOpp, CCExposureReg and CCExposurePhy are relative frequency with which

bigrams that capture opportunities, regulatory and physical shocks related to climate change

occur in the transcripts of earnings conference calls. Detailed variable definitions are pre-

sented in Table A1. Panel E shows that emission level is strongly positively correlated with

firm sales and size, as documented in Zhang (2024). In addition, low emission level and low

3According to recent progress Chen and Roth (2024), we do not adopt the log(x+ 1) form when taking
the logarithm of values. Our results are robust when applying log(x+ 1).
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intensity are associated with high carbon level-intensity divergence and long equity duration.

In summary, carbon level and intensity are more divergent for green firms. We will deliver

a detailed discussion of the consequences in the next section.

3. Divergence between carbon metrics

In this section, we delve into the details of the relationship between carbon level and inten-

sity. We demonstrate that carbon level and intensity generate significant divergence when

evaluating firms’ emission performance. The divergence becomes increasingly serious after

2016. The potential reason for this may stem from the data vendors’ estimation process.

3.1. Ambiguity of green definition

The existing literature on carbon premiums debates whether it is carbon level or intensity

that is priced (Bolton and Kacperczyk, 2021, 2023; Aswani, Raghunandan, and Rajgopal,

2024; Zhang, 2024). Instead of directly proposing another asset pricing test, we first investi-

gate the carbon metrics per se. To understand the relationship between these two measures,

we sort carbon intensity against level into 10 even groups. Within each level group, we

summarize the minimum, first quartile (25th percentile), median, third quartile (75th per-

centile), and maximum intensity using a box plot in Figure 1. The two dashed lines represent

the whole sample’s 10th percentile and 90th percentile of carbon intensity, respectively. For

each carbon emission level group, their carbon intensity covers very different ranges. All of

the carbon level groups reach the lowest carbon intensity area, while only groups 9 and 10

(the brownest carbon level firms) span to the highest-intensity area. Alternatively, compa-

nies within the 10th percentile of carbon intensity are distributed across all ten carbon level

groups, and companies above the 90th percentile of carbon intensity are only found in the

highest two groups of carbon level. We demonstrate that this relationship remains robust in

both disclosed and estimated samples in Appendix Figure A1. Accordingly, this pattern is
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not introduced by the emission data estimation process of data vendors. This fact implies

that these two carbon measures have a relatively consistent definition for brown firms, but

there is significant contention regarding their definition for green firms, which echoes the

negative correlation coefficients between divergence and carbon measures.

[Insert Figure 1 around here]

Next, we further apply the multivariate analysis by regressing divergence on carbon

measures and a bunch of firm’s characteristics,

(5) Divergencei,t = α0 + α1Carboni,t + α2Controlsi,t + δindustry × γt + ϵi,t

where Divergencei,t denotes the absolute difference between the percentiles of firm i’s carbon

level and intensity within time t. Carboni,t is a generic term alternately standing for carbon

level and intensity. The vector of controls includes Size, BM, ROA, Leverage, Sales, INV,

and ∆EPS. We also include industry-year fixed effects. Standard errors are clustered at the

firm level.

We report the results in Panel A of Table II. A one-standard-deviation decrease in carbon

level leads to a 10.8% increase in carbon divergence, and a one-standard-deviation decrease

in carbon intensity leads to a 5.4% increase in carbon divergence. In unreported coefficients

of control variables, firms with higher carbon divergence tend to have higher size, BM ratio,

sales, and investment, but lower ROA and leverage. Carbon level (intensity), firm charac-

teristics, and industry-year variation account for 24.2 percent (24.4 percent) of the carbon

divergence. The results consolidate the findings in Figure 1 and Table I, indicating that an

increase in emissions mitigates the divergence between carbon level and intensity.

Intuitively, for firms with a high emission level and a high emission intensity, there is little

doubt in classifying them as brown firms. However, if a company has high carbon emissions
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but also a large scale of sales or production (resulting in low carbon intensity), should we

regard it as a green company? Our results reveal a widespread concern. One viewpoint

suggests that total emission levels directly reflect a company’s environmental burden and

associated risks, which is relevant for complying with strict climate policies where absolute

reductions are crucial (BK, 2021, 2023). However, another viewpoint argues that carbon

intensity provides a more consistent basis for comparison across firms because it is less

influenced by the company’s scale of operations and more reflective of its environmental

management effectiveness (Aswani, Raghunandan, and Rajgopal, 2024; Zhang, 2024). The

high degree of divergence highlights that we should be very careful in drawing conclusions

based solely on carbon level or intensity.

[Insert Table II around here]

3.2. Distortion between carbon emissions and sales

After summarizing the divergence between carbon level and intensity, we posit that this diver-

gence is not only derived from the inherent logic used in constructing these indices but is also

closely linked to the quality of the carbon data itself. Existing literature has identified that

estimated emissions often represent a mechanistic function of financial fundamentals rather

than genuine environmental performance (Matsumura, Prakash, and Vera-Munoz, 2014) and

firms’ disclosed emissions appear bias (Kim and Lyon, 2011, 2015), leading to flawed con-

clusions in research linking emissions to stock returns or corporate valuation (Zhang, 2024;

Aswani, Raghunandan, and Rajgopal, 2024). In this section, we first describe the method-

ological approaches used by mainstream carbon data providers to estimate emissions data.

Subsequently, in the second part, we focus on elucidating how these estimation methods

distort the relationship between carbon emissions and sales in the real world.
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3.2.1. Estimation methodology

Data vendors frequently use average industry outputs to approximate a firm’s emissions

in the absence of direct data. This approach assumes that companies within the same

industry operate similarly, potentially overlooking the specific emission reduction initiatives

or unique operational tactics of individual companies. Estimates from vendors largely depend

on measures such as the size and growth of a company4, which could lead to inaccuracies

when comparing the vendor estimated and the company disclosed emissions. In Table A2,

we group the firms by their carbon emission level and calculate the number of estimated

observations and disclosed observations in Trucost. In the first (greenest) group, there

are 1,855 observations in total, with the number of estimated observations being 1,790,

accounting for over 96.5 percent. In the tenth group (brownest), there are 1,856 observations

in total, with estimated observations numbering 612, accounting for around 33 percent. From

the Green to Brown groups, the proportion of estimated observations gradually decreases

while the share of disclosed emissions progressively increases. From groups 1 to 8, most of

the observations are estimated.

The above empirical facts arise from several important changes made by the data vendor.

After 2016, there was a significant increase in the number of observations in Trucost. This

increase stemmed primarily from Trucost’s estimations of emissions for companies that did

not disclose their emissions, rather than from an increase in voluntary emissions disclosures

by the companies themselves. Figure 2 visualizes these trends. The solid line represents the

average level-intensity divergence on the left axis, illustrating that divergence significantly

increased in 2016. The dashed line represents the number of estimated firms on the right axis,

showing a significant increase in estimated observations in 2016, which mirrors the pattern

of divergence. The dotted line represents the number of disclosed observations on the right

4The broad method for compiling emissions data is outlined in the IPCC (2006) “Guidelines for National
Greenhouse Gas Inventories”, where it is explained that emissions are calculated by multiplying Activity
Data by an Emission Factor.
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axis, indicating that the number of companies voluntarily disclosing carbon data has only

experienced a gradual increase. These group summary statistics and trends indicate several

important data issues: 1) the number of estimated observations significantly increased after

2016; 2) most of the low carbon level firms are actually estimated by the data vendor; 3) the

estimated observations introduce a significant divergence between carbon level and intensity,

challenging our conventional wisdom for evaluating a firm’s carbon emission performance.

[Insert Figure 2 around here]

3.2.2. Heterogeneity in carbon emissions-sales relationship

After confirming the carbon level-intensity divergence and the number of estimated car-

bon emission observations, we explore this issue in-depth. The construction of carbon inten-

sity requires two ingredients: carbon emission level and sales. The underlying logic is that in

a carbon-dependent economy, a firm’s revenue generation process requires a certain amount

of carbon emission. Carbon data vendors also apply this logic to estimate carbon emission

levels when disclosed emission observations are missing:

(6) Emissionsi,t = (Unit emissions per sale)i,t × Salesi,t

To understand the consequence of using a multiplier to estimate carbon emission, we use

the following equation to decompose the carbon emission into fixed emissions and variant

emissions. In Equation 6, Unit emissions per sale represents the intended capture of carbon

intensity. The underlying notion is that carbon emissions are all variable, such as processing

and use of raw materials, energy consumption, logistics, and transportation. However, due to

significant heterogeneity among companies, estimation methods based on industry standards

or financial fundamentals overlook individual corporate characteristics. We optimize the
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model as follows:

(7) Emissionsi,t = ( ̂Unit emissions per sale)i,t × Salesi,t + ̂Fixed emissionsi

In Equation 7, Fixed emissions represents a form of corporate carbon emissions that

do not vary with changes in scale or sales, such as maintenance of facilities and buildings,

R&D activities, infrastructure operations, and use of fixed equipment. This toy model better

captures the heterogeneity in corporate carbon dependency.

For instance, green firms, whose profitability is less dependent on carbon emissions,

have a higher proportion of fixed carbon emissions in their total emissions, which leads

to an overestimation of their original carbon intensity (carbon emissions divided by sales).

Conversely, the carbon intensity of brown firms may be underestimated. Therefore, this

leads to a stronger carbon level-intensity divergence. We test this relationship using the

following model:

Emissionsi,t = α0 + α1I(Green)i,t × Salesi,t + α2I(Brown)i,t × Salesi,t

+ α3Salesi,t + α4I(Green)i,t + α5I(Brown)i,t + α6Controlsi,t

+ δindustry × γt + ϵi,t

(8)

I(Green) and I(Brown) are indicator variables set equal to 1 if a firm’s total carbon emission

level is in the lowest 30 percentile or highest 70 percentile within each cross-section, and 0

otherwise. The regression controls for Size, BM, ROA, Leverage, INV, and ∆EPS. We also

include industry-year fixed effects. Our coefficients of interest are α1 and α2.

In Panel B of Table II, we report the full sample, disclosed sample, and estimated sample

in columns 1, 2, and 3, respectively. As expected, in the full samples, we find a strong

positive correlation between carbon emissions and sales. Vendor-estimated emissions are 6.7

percent more sensitive to sales than firm-disclosed emissions (we report the results of the
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regressions without interaction items of emissions on sales in Table A3). Firm character-

istics and industry-year variation explain 93.1% of carbon emission levels in the estimated

sample, which is 13.8% higher than the disclosed sample. Interestingly, in the disclosed

sample, brown firms exhibit a more significantly positive emission-sales relationship com-

pared to non-brown firms. Even more intriguingly, the pattern in the estimated sample is

reversed, with green firms showing a more significantly positive emission-sales relationship,

while for brown firms it is significantly negative. In the bottom thirty percent of emitters,

the difference of coefficient between vendor-estimated emissions and firm-disclosed emissions

expands to 62.6%. But this wedge in sales-emissions sensitivity becomes only -19.9% in the

top thirty percent of emitters. These empirical facts align with our hypothesis that due

to the misestimation of carbon data, the carbon intensity of green companies is excessively

overestimated, leading to a huge carbon level-intensity divergence.

As discussed in this section, divergence and misestimation significantly impact our ac-

curacy in assessing firms’ greenness. We argue that the mechanism of carbon intensity as

a measure overlooks the fixed carbon emissions of individual firms, distorting the true defi-

nitions of green and brown. Therefore, we next adopt an economic perspective to examine

the carbon premium based on carbon emission levels. However, for robustness, we will also

demonstrate that our main results hold true within the framework of carbon intensity.

4. Characterizing carbon premium in the lens of equity duration

Section 3 examines the contentious carbon footprints and data currently associated with the

carbon premium. We discover that inaccurate estimations of carbon emissions by carbon data

providers lead to ambiguity in the definition of ‘green’, exacerbating discrepancies in carbon

assessments. Currently, numerous debates surround the carbon premium. BK (2021, 2023)

suggest that in the U.S. and globally, brown stocks exhibit a carbon premium, reflecting that

carbon transition risk is already priced into equity markets. Other research, such as that by
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Pastor, Stambaugh, and Taylor (2021, 2022); Pedersen, Fitzgibbons, and Pomorski (2021);

Zhang (2024), indicate that green stocks outperform, suggesting an ongoing transition to

a carbon-aware equilibrium. However, reviewing the construction of carbon measures and

the underlying data estimation reveals that disputes over the carbon premium are naturally

engendered by their inherent differences. Therefore, we propose a novel perspective, utilizing

equity duration to reconcile the various controversies regarding the carbon premium.

As discussed in Section 2, we construct implied equity duration following the method-

ology outlined by Dechow, Sloan, and Soliman (2004) and Weber (2018), who forecast the

cash flows of individual stocks and calculate their average maturity based on that forecast.

To provide an initial overview of long-duration and short-duration firms, we examine two

prominent examples: General Motors (GM) and Tesla. GM specializes in producing inter-

nal combustion engine vehicles, while Tesla is a leading electric vehicle manufacturer. We

calculate the implied equity duration of these two companies and each year’s cash flow as

illustrated in Eq. 2. We adopt parameters from Dechow et al. (2021), with a return on

equity (ROE) of 6 percent and a terminal growth rate of 0 percent, to closely align with the

macroeconomic conditions at the end of 2020. Subsequently, we plot the implied cash flow

forecast for these two companies over the next 20 years.

[Insert Figure 3 around here]

The example of GM and Tesla vividly represents the current economic transition over the

next two decades. Society is gradually realizing that carbon neutrality is inevitable. Even

though the current cash flows of less carbon-dependent companies are negligible, investors

still recognize their potential cash flow in the long run.
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4.1. Equity duration and climate change exposure

Climate change exposure encompasses various dimensions of risk and opportunity that busi-

nesses face due to global climate dynamics. Broadly, climate change exposure can be cat-

egorized into physical, regulatory, and opportunity exposures. Physical exposure refers to

the direct effects of climate change, such as extreme weather events, which can impact phys-

ical assets and operations. Regulatory exposure includes risks from potential governmental

actions like carbon pricing or emissions regulations that aim to mitigate climate change.

Opportunity exposure relates to the potential benefits companies can capture from the shift

towards a greener economy, such as renewable energy and technological innovations in sus-

tainability.

Equity duration, as developed by Dechow, Sloan, and Soliman (2004), measures the

sensitivity of a company’s equity value to changes in the market’s required rate of return. It

captures not only the time aspect but also the exposure to various risks and opportunities. In

the context of climate change, duration can provide insights into the nature of climate change

exposure. Longer duration implies greater sensitivity to future transition and technological

changes, which correlates with a higher degree of exposure to opportunity-driven climate

change aspects. Conversely, shorter duration indicates a higher sensitivity to immediate

regulatory changes, suggesting an increased exposure to regulatory climate change risks.

To better analyze the relationship between equity duration and climate change exposure,

we incorporate the relevant indices constructed by Sautner et al. (2023). Sautner et al.

(2023) develops a nuanced method to quantify climate change exposure by analyzing earn-

ings call transcripts with machine learning techniques. This method identifies keywords and

phrases that reflect the company’s exposure to climate change-related opportunities, physical

impacts, and regulatory changes. It offers a robust framework for understanding how differ-

ent companies perceive and respond to the risks and opportunities associated with climate
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change. It allows us to do a sophisticated analysis of the interplay between a firm’s equity

duration and its climate change exposure. Specifically, we estimate the following model:

(9) Duri,t+1 = α0 + α1CCExposurei,t + α2Controlsi,t + δindustry × γt + ϵi,t

where Duri,t+1 measures the equity duration of company i in year t+1 and CCExposure is a

generic term standing for CCExposureOpp, CCExposureReg and CCExposurePhy. Since the

dependent variable, equity duration, is a constructed variable, we control for variables related

to duration that have been identified in previous literature. Gormsen (2021) emphasizes

that BM ratio is closely linked to duration; duration has predictive power for market beta

(Dechow, Sloan, and Soliman, 2004); leverage can predict duration (Dechow et al., 2021),

and the fundamentals related to size, sales, and ROA are included in the construction of

equity duration (Dechow, Sloan, and Soliman, 2004). We also control for total carbon

emission levels, which have high correlation with climate change exposure. So the vector of

controls includes the variables Emission, Size, BM, ROA, Leverage, Sales, INV and Beta.

We additionally include industry-year fixed effects.

We report the results in Table III. We find that higher equity duration is significantly

associated with higher opportunity exposure, and lower equity duration is significantly as-

sociated with higher climate regulatory exposure. For instance, a one-standard-deviation

increase in climate opportunity exposure and climate regulatory exposure is associated with

a 0.115-year increase (t=3.95) and a -0.044-year decrease (t=-2.02) in equity duration after

including industry-year fixed effects. Together, these climate change exposures, firm charac-

teristics, and industry-year variations account for 53.8% of the observed equity duration.

[Insert Table III around here]
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4.2. Regression analysis

We argue that the firm’s cash flow structure plays a vital role in determining the economic

implications of carbon emissions. For short-duration firms, their cash flows are concentrated

in the near-term, and high carbon emissions are associated with high regulatory shocks. To

compensate for the transition risk, investors require higher returns. Conversely, for long-

duration firms, their cash flows are projected into the long-term. Low carbon emissions

represent opportunities for generating carbon-neutral cash flows in the future, suggesting

a hedging value. For these firms, investors’ hedging demand creates high returns for low

emissions, resulting in a negative carbon return.

We first investigate the relationship between the carbon emission and stock return by

panel regression analysis as BK (2021, 2023). In column (1) of Table IV, we replicate one

main result from BK (2021), by regressing monthly stock returns on the carbon metrics and

lagged firm-level controls by the following regression model:

(10) RETi,t = α0 + α1Emissionsi,t + α2Controlsi,t−1 + δindustry + γt + ϵi,t

where RETi,t means the stock return of company i in month t, and Emissions is the natural

logarithm of total carbon emission level. The vector of Controls includes a comprehensive

set of firm-specific variables known to predict returns, such as Size, BM , ROA, Leverage,

Sales, INV , ∆EPS, Beta, Momentum, and V olatility. Year-month and industry fixed

effects are controlled for, and standard errors are clustered at the firm and year levels. Our

coefficient of interest is α1. All independent variables are standardized to have a zero mean

and unit variance, allowing coefficients to be interpreted as the change in monthly stock

returns for a one-standard-deviation increase in the carbon footprint. Our results on carbon

level are consistent with those of BK (2021). A one-standard-deviation increase in carbon

emissions leads to a 0.35 percent increase in monthly stock returns.
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[Insert Table IV around here]

Next, we focus on the carbon premium conditional on equity duration. Our baseline regres-

sion model is as follows:

RETi,t = α0 + α1Emissionsi,t × I(LongDur)i,t + α2Emissionsi,t × I(ShortDur)i,t

+ α3Emissionsi,t + α4I(LongDur)i,t + α5I(ShortDur)i,t

+ α6Controlsi,t−1 + δindustry + γt + ϵi,t

(11)

where I(LongDur) and I(ShortDur) are indicator variables that equal to one if Dur is

in the top 30 percent or lowest 30 percent respectively within the cross-section, and zero

otherwise. In column (2) of Table IV with the specification of including time fixed effect, the

statistically significant and negative α1 shows that the positive association between returns

and carbon emission reverses among long-duration stocks. Conditioning on the long-duration

group, a one-standard-deviation increase in carbon emission level would decrease returns by

0.48% compared to other firms, with t-statistics of -6.25. For shorter duration firms, the

positive level-return relationship mainly driven by baseline effects with α2 being statistically

insignificant and positive. We additionally include industry fixed effect, which is shown in

Column (3), the different results between long-duration and short-duration firms still hold.

For robustness, we replace the dependent variable of Equation 11 with a measure of stock

returns adjusted for firm characteristics that are known ex-ante predictors of stock returns in

the cross-section. Following the methodology outlined by Daniel et al. (1997), we construct

125 benchmark portfolios, which are sequentially triple-sorted based on the previous year’s

size, book-to-market ratio, and past stock performance. This procedure utilizes NYSE-based

breakpoints for sorting and creates value-weighted portfolios to prevent the overweighting

of very small stocks. we then subtract the returns of these benchmark portfolios from each

firm’s stock returns. An adjusted return of zero for a specific stock indicates that its return is
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fully explained by the firm’s size, book-to-market ratio, and past performance. The baseline

results of DGTW adjusted returns are shown in Column (4) to (6) of Table IV. Conditioning

on the long-duration group, a one-standard-deviation increase in carbon emission level would

decrease adjusted returns by 0.49% compared to other firms, with t-statistics of -5.99. The

magnitudes of coefficient is comparable with the unadjusted specification.

The conditional results reveal that, the positive carbon-return relationship (BK, 2021;

2023) stems from short-duration firms, while the negative carbon-return (Zhang, 2024) rela-

tionship is mostly driven by long-duration firms. We will show our baseline results are robust

when controlling for sales, lagging emission data, accounting for disclosure and estimated

emissions, and using emission intensity as greenness measure in Section 4.5.

4.3. Asset pricing factor analysis

We then conduct portfolio sorts using proxies of firms’ carbon risks. At month t, we adopt

the point-in-time carbon emission level data. Then we sort the stocks into tercile portfolios:

green, medium, and brown. Concurrently, stocks are also sorted into two groups based on

their equity duration: short and long. This sorting results in six portfolios combining the

two dimensions (carbon footprints and equity duration): green long, medium long, brown

long, green short, medium short, and brown short. After forming the six portfolios, we

calculate the value-weighted DGTW adjusted monthly returns on these portfolios at time

t+1, according to the methodology in Daniel et al. (1997). We report carbon return within

different equity duration groups in Panel A of Table V. Column (1) and (2) show short-

duration and long-duration portfolio respectively. For long-duration portfolio, from emission

portfolio 1 (Green) to 3 (Brown) earns the average returns of 0.31% and -0.06 %, while

this relationship weakens in short-duration portfolios. The long-BMG (brown-minus-green)

portfolio in Column (2) is then constructed by taking the difference between the returns of

the brown-long portfolio and the green-long portfolio, which means taking a long position
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in the brown portfolio and a short position in the green portfolio. The short-BMG portfolio

in Column (1) is then constructed by a brown-short portfolio and a green-short portfolio.

Carbon emissions can predict stock returns in cross-section only in long-duration portfolios,

while the short-duration portfolios show a smaller magnitude and statistically insignificant

excess return. The long-BMG portfolio sorted on carbon emissions earns a significantly

negative excess return of -0.37 (t-stat=-2.78) percent per month. This finding is aligned

with our panel regression analysis in section 4.2.

[Insert Table V around here]

We next examine whether the negative carbon returns can be explained by existing risk

factors. We estimate the following time-series regression model using monthly data:

(12) BMGt = c0 + cFt + ϵt,

where BMGt is the carbon premium we calculate above within long-duration and short-

duration groups. F is the CAPM, FF5 and FF6 factor model (Fama and French, 2018),

which include the momentum factor together with the MKT, SIZE, HML, CMA, and RMW.

Panel B in Table V reports the results. After adjusting for the factor exposure, the longer-

duration BMG portfolio earns significantly lower alphas than the shorter-duration one. The

long-BMG portfolio sorted on total carbon emissions earns abnormal returns of -0.29, -0.38,

-0.38 percent per month (t-statistics=-2.24, -3.93 and -3.94) after controlling for CAPM,

FF5 and FF6 factors, respectively. In sum, the carbon premium is statistically significant

and negatively associated with future stock returns and alphas within only long-duration

groups.
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4.4. Decomposing duration-driven carbon premium through discount rate and cash flow

In the previous section, we demonstrate that long- and short-duration stocks influence the

carbon premium differently. Next, we test our hypotheses regarding how carbon emissions

are priced in long- and short-duration samples. We investigate this through two channels:

discount rates and cash flows. A critical question is whether the duration-driven carbon

premium arises from revisions in expected cash flows or discount rates, and to what extent

each factor contributes. We design the model conducted separately in long- and short-

duration sample, respectively, as follows:

RETi,t = α0 + α1Emissionsi,t × ICCi,t + α2Emissionsi,t × CF Forecasti,t

+ α3Emissionsi,t + α4ICCi,t + α5CF Forecasti,t

+ α6Controlsi,t−1 + δindustry + γt + ϵi,t

(13)

where ICC is the medium of four accounting measures of the implied cost of capital, ac-

cording to the methodology in Gebhardt, Lee, and Swaminathan (2001), Claus and Thomas

(2001), Easton (2004) and Ohlson and Juettner-Nauroth (2005) and CF Forecast is cal-

culated as change in EPS forecast scaled by lagged stock price. The regression results are

shown in Table VI. In long-duration sample reported in Column (1) and (2), we see pricing

of carbon emission is conditional on the discount rate, with statistically significant and neg-

ative coefficient α1. For long-duration stocks, high emission-level firms have higher discount

rates, which causes a lower expected stock return. In short-duration sample reported in

Column (3) and (4), pricing of carbon emission is conditional on the near-term cash flow.

For short-duration stocks, high emission-level firms have higher cash flows, which causes a

higher expected stock return.

[Insert Table VI around here]
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A potential concern regarding the above results is that the interaction terms between

emissions and discount rates, as well as emissions and expected cash flows, may differ funda-

mentally between the short- and long-duration samples. We regress ICC and CF Forecast

separately against emissions, with the results documented in Table VII. The relations be-

tween emissions and expected cash flows or discount rates are similar across long- and short-

duration groups.

[Insert Table VII around here]

4.5. Robustness analysis

In evaluating the robustness of our baseline model (see Equation 11), it is essential to con-

sider four key concerns: the significant influence of sales information on the carbon premium,

potential biases in carbon data estimation due to reliance on firm fundamentals, the presence

of forward-looking biases in regression models and divergence caused by alternative green-

ness measure like carbon intensity. To ensure the accuracy of our findings regarding the

conditional duration carbon-return relationship, we address these concerns in this section.

4.5.1. Controlling for sales information

The role of sales information in the carbon premium is pivotal and warrants careful

scrutiny. Sales data often play a crucial role in the estimation of carbon emissions, primar-

ily because emissions figures are frequently derived from economic output measures that

are closely tied to a company’s sales performance. This association can inadvertently lead

to a misinterpretation of the carbon premium, where the identified risk premiums might

not exclusively reflect the environmental impact or management of carbon emissions but

are confounded by the underlying business activities and financial health reflected in sales.

Zhang (2024) demonstrates that controlling for sales information shifts the perceived carbon

emissions premium from positive to negative, suggesting previous findings may be artifacts
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of omitted variable bias rather than true market valuations of carbon efficiency.

We first replicate the analysis in Zhang (2024), controlling for sales information during

the same period of carbon emission. Column (1) of Panel A in Table VIII presents the

results and shows that both total carbon emissions are significantly associated with lower

contemporaneous stock returns after controlling for sales information as in Zhang (2024).

We further conduct the regression with interaction terms as follows:

RETi,t = α0 + α1Emissionsi,t × I(LongDur)i,t + α2Emissionsi,t × I(ShortDur)i,t

+ α3Emissionsi,t + α3I(LongDur)i,t + α3I(ShortDur)i,t

+ α4Salesi,t + α5Controlsi,t−1 + δindustry + γt + ϵi,t

(14)

The vector of sales information includes Sales and ∆Sales. Columns (2) and (3) of

Panel A in Table VIII present the results of interaction terms. Sales information is strongly

associated with higher stock returns. Even after controlling for sales, the duration conditional

results still hold. For long-duration firms, a one-standard-deviation increase in level decreases

the stock return by 0.55% and 0.58% with t-statistics of -6.14 and -6.65 more than baseline

effects after introducing time fixed effect, industry and time fixed effects, respectively. For

shorter duration firms, carbon emissions are positively associated with stock returns. It is

robust that the sales information is not the driver of the duration conditional carbon-return

relationship.

[Insert Table VIII around here]

4.5.2. Estimation bias

Due to data limitations, current research on carbon emission predominantly relies on es-

timated data provided by data vendors. The biases inherent in these estimation methods can

significantly impact the interpretation of the carbon premium. Existing studies have already

identified that such estimations are generally based on firm fundamentals and industry-level
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factors, which may not accurately reflect actual emissions but rather correlate with other

financial metrics like sales or production data (Aswani, Raghunandan, and Rajgopal, 2024).

In Section 3, we also observe that the current estimation methods fail to account for the

distinctive characteristics of individual firms. This oversight of heterogeneity—whether a

firm is “green” or “brown”—roughly bases all firm estimates on an emissions-sales method-

ology, which distorts reality. Consequently, in this section, we exclude samples where carbon

data are estimated and potentially noisier, conducting baseline regression of Equation 11 on

samples where firms voluntarily disclose their carbon emissions. We present the results in

Panel B of Table VIII.

Compared with Table IV, we find in columns (1) to (3) that the carbon emission premium

in the disclosed sample is smaller and much more statistically insignificant than that in the

full sample. However, our coefficients of interest, the interaction terms in columns (2) and

(3), are still negative and statistically significant. This indicates that our inference remains

valid in the sample of disclosed carbon emissions. The duration conditional carbon-return

relationship is not introduced by data vendor’s estimation.

4.5.3. Forward-looking bias

The issue of looking-ahead bias in regression models used to study carbon premiums

involves the premature incorporation of emissions data relative to their actual release to

investors. Studies have shown that emissions and related variables, when not sufficiently

lagged in analytical models, can lead to an overstatement of the positive relationship between

carbon emissions and stock returns. This can occur because emissions data might incorporate

future sales information, thus not reflecting the current or past stock performance but rather

expectations of future firm performance (Zhang, 2024). BK (2023) studies the relationship

between stock returns and emissions lagged by one month and longer lags using Equation

10. Lagging the emission data sufficiently can address the forward-looking bias and avoid

incorrect inference. According to Zhang (2024), the median lags are 10 months after the
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emission fiscal year-end for the U.S. samples, so we use the following specification:

RETi,t = α0 + α1Emissionsi,t−1 × I(LongDur)i,t + α2Emissionsi,t−1 × I(ShortDur)i,t

+ α3Emissionsi,t−1 + α4I(LongDur)i,t + α5I(ShortDur)i,t

+ α6Controlsi,t−1 + δindustry + γt + ϵi,t

(15)

where right-hand-side carbon variables are lagged 12 months. The results are reported in

Table VIII. Consistent with the empirical findings of Zhang (2024) and Ilhan, Sautner, and

Vilkov (2021), the coefficient of carbon emissions turns negative and becomes statistically

insignificant when sufficient lags of carbon data are considered. Nevertheless, the key coef-

ficients—the interaction terms of long-duration indicator and carbon emissions in columns

(2) and (3)—remain negative and statistically significant. The interactions between short-

duration indicator and emissions are positively correlated with stock returns. This suggests

that our conclusions remain sound even after accounting for forward-looking bias and incor-

porating industry-year fixed effects.

4.5.4. Alternative measure of greenness: carbon intensity

A key debate regarding the carbon premium centers on the definition of ‘greenness.’

Although we previously noted that the carbon intensity measure introduces a measurement

bias by ignoring fixed carbon emissions, for the sake of robustness, we replaced the carbon

emission level in our baseline model with carbon intensity. The results of the panel regression

analysis are presented in Panel A of Table IX, while the portfolio sorting results are shown

in Panel B of Table IX. These outcomes align with those of the main table, demonstrating

strong robustness.

[Insert Table IX around here]
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5. Conclusion

We address the critical complexities involved in estimating the carbon premium by intro-

ducing equity duration as a fundamental measure. Our comprehensive analysis underscores

that regardless of the measure used, emission level or emission intensity, brown firms con-

sistently exhibit lower returns than green firms among long-duration equities. This inverse

relationship highlights the nuanced effects of carbon transition risks on future cash flows and

their current market valuation. Through robust empirical analysis, our findings elucidate the

significant role of equity duration in reconciling the divergent results across previous studies

on carbon pricing in equity markets. This research not only advances our understanding of

how carbon transition risks are priced but also contributes to more informed and effective

financial decision-making in the context of ongoing climate change challenges.

Looking ahead, future research should focus on refining models that predict and describe

carbon emissions with greater precision. Advancements in data quality and methodology

can enhance our understanding of the carbon transition risks and their impacts on equity

valuation. Specifically, research could explore machine learning techniques to improve the

estimation of emissions data, particularly in contexts where disclosures are incomplete or

non-standardized. Additionally, incorporating more granular data on sector-specific prac-

tices and technological changes could yield insights into the differential impacts across in-

dustries. This approach would allow for a more nuanced analysis of how specific strategies,

such as technological innovations in carbon capture and sustainable practices, influence firm

valuations. Such detailed studies are crucial for developing strategies that can effectively

align financial markets with global sustainability goals.
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Figure 1: Emission level-sorted intensity

This figure presents the distribution of carbon emission intensity evenly sorted by emissions
level into decile groups. Carbon intensity is the ratio of the total carbon emissions to
year-end sales. For each group, we display the distribution of carbon intensity based on the
minimum, first quartile (Q1), median, third quartile (Q3), and maximum in a box plot.
The gray dashed lines represent the 10th percentile of carbon intensity at the bottom and
the 90th percentile of carbon intensity for the whole sample.
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Figure 2: Carbon level-intensity divergence and data estimation

This figure illustrates the average carbon level-intensity divergence (left axis) and the
number of firms that disclose their carbon emissions and those estimated by Trucost (right
axis) for each year. Carbon level-intensity divergence is calculated as the absolute difference
between the percentiles of a firm’s total carbon emission level and carbon intensity within
each cross-section. The results are based on the 2005-2020 U.S. sample.
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Figure 3: Implied cash flow of General Motors Company and Tesla Inc.

This figure shows the first 20 years’ implied cash flow of General Motors Company and Tesla Inc on December 31, 2019. The
forecasting algorithm is introduced by Eq.2. Following Dechow et al. (2021), we use a discount rate and terminal ROE of 6%
and a terminal period growth rate of 0% in these examples.
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Table I: Summary statistics

The table reports summary statistics (autocorrelations, averages, standard deviations, percentiles,
skewness, and kurtosis) of the variables used for regressions. We calculate the autocorrelation
(AR) at the annual frequency. The sample period covers 2005-2020 in the U.S. Panel A reports
the carbon variables. Emissions is the natural logarithm of the total carbon emission level (the
total of scope 1 and 2). Intensity is the natural logarithm of the ratio of total carbon emissions
to year-end sales. Divergence is defined as each year’s absolute difference between the percentiles
of a firm’s total carbon emission level and carbon intensity. Panel B reports the equity duration
variable. Dur is the implied duration of equity. Panel C reports other financial and equity market
variables. RET is the monthly stock return. ICC is stock’s implied cost of capital. CF Forecast
is calculated as change in EPS forecast scaled by lagged stock price. Size is the natural logarithm
of market capitalization. BM is the book-to-market ratio. ROA is the return on assets. Leverage
is the ratio of debt (long-term debt plus debt in current liabilities) to the book value of total
assets. Sales is the natural logarithm of year-end sales. INV is the CAPEX divided by the book
value of assets. Beta is the 60-month rolling CAPM beta. Momentum is the cumulative stock
return over past year skipping the most recent month. V olatility is the monthly stock return
volatility calculated over the one-year period. ∆EPS and ∆Sales are the natural logarithms of
year-over-year growth in EPS and sales, respectively. Panel C reports climate change exposure
variables. Data of climate change exposure is from Sautner et al. (2023). Panel E reports the
correlations among emission variables and important cross-sectional return variables. Table A1
provides detailed variable definitions.

AR Mean SD P25 Median P75 Skew Kurt

Panel A: Emission variables

Emissions 0.98 11.27 2.55 9.80 11.40 12.90 -0.39 3.38

Intensity 0.97 3.94 1.23 3.16 3.72 4.46 0.90 3.81

Divergence 0.92 0.20 0.17 0.06 0.16 0.31 1.05 3.63

Panel B: Implied equity duration

Dur 0.63 20.26 4.02 18.67 20.90 22.41 -0.81 7.46

Panel C: Cross-sectional return variables

RET 0.00 1.28 12.54 -5.27 1.03 7.25 0.38 5.05

ICC 0.92 8.67 3.19 6.87 8.36 9.99 1.04 5.66

CF Forecast 0.91 0.76 6.39 -0.39 0.53 1.33 2.06 18.02

Size 0.96 7.89 1.79 6.75 7.95 9.05 -0.11 2.92

BM 0.77 0.51 0.47 0.21 0.38 0.66 2.30 9.74

ROA 0.85 0.08 0.19 0.07 0.12 0.17 -2.51 11.31

Leverage 0.89 0.28 0.23 0.11 0.25 0.40 1.02 4.31

Sales 0.99 7.34 2.11 6.28 7.58 8.68 -0.84 4.37

INV 0.86 0.05 0.05 0.02 0.03 0.06 2.60 11.12

∆EPS -0.32 0.05 0.87 -0.28 0.08 0.36 0.04 5.93

Beta 0.83 1.30 0.70 0.84 1.20 1.65 0.93 4.34

Momentum -0.02 0.09 0.44 -0.17 0.06 0.28 1.21 6.31

V olatility 0.58 0.12 0.08 0.07 0.10 0.15 1.98 7.91

∆Sales 0.16 0.07 0.29 -0.02 0.06 0.16 0.64 9.49
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Table I: Summary statistics (cont’)

Panel D: Climate change exposure variables

AR Mean SD P25 Median P75 Skew Kurt

CCExposureOpp 0.89 0.26 1.03 0.00 0.00 0.16 11.10 181.95

CCExposureReg 0.79 0.04 0.22 0.00 0.00 0.00 16.37 398.40

CCExposurePhy 0.74 0.01 0.12 0.00 0.00 0.00 32.15 1469.88

Panel E: Correlations

Emis. Int. Div. Dur Size Sales

Emissions 1.00

Intensity 0.57 1.00

Divergence -0.21 -0.23 1.00

Dur -0.31 -0.25 0.12 1.00

Size 0.61 -0.03 0.04 0.14 1.00

Sales 0.87 0.10 -0.11 -0.23 0.75 1.00
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Table II: Divergence between carbon metrics

Panel A shows determinants of carbon level-intensity divergence. The dependent variable is
Divergence. In the regressions for columns (1) to (2), we include year fixed effects. In columns (3)
to (4), the regressions include industry-year fixed effects. Panel B studies between-group difference
of regressions that relate total carbon emission level to firm sales. I(Green) and I(Brown) are the
indicator variables set equal to 1 if a firm’s total carbon emissions are in the lowest 30% or highest
70% within each cross-section, and 0 otherwise. In column (1), the results are from the U.S.
sample. In column (2), regressions are conducted in the U.S. subsample where firms report their
carbon emissions. In column (3), regressions only include the U.S. firms whose carbon emissions
are estimated by Trucost. All regressions control for Size, BM , ROA, Leverage, Sales, INV
and ∆EPS. All variables are defined in Table A1. The sample period covers from 2005 to 2020.
The industry classification standard is the 48 Fama and French industries. The t-statistics are
reported in the parenthesis below the coefficients. All standard errors are clustered at the firm
level. Statistical significance is denoted by p***<0.01, p**<0.05, p*<0.1.

Divergencei,t

Panel A. (1) (2) (3) (4)

Emissioni,t -0.082*** -0.108***

(-11.23) (-10.36)

Intensityi,t -0.041*** -0.054***

(-11.19) (-10.34)

Controls Yes Yes Yes Yes

Year F.E. Yes Yes No No

Industry×Year F.E. No No Yes Yes

Observations 13,787 13,787 13,715 13,715

Adj.R2 0.173 0.174 0.242 0.244

Emissionsi,t

Full sample Disclosed sample Estimated sample

Panel B. (1) (2) (3)

I(Green)i,t × Salesi,t 0.338*** 0.203 0.354***

(7.86) (1.15) (7.71)

I(Brown)i,t × Salesi,t 0.086 0.391*** -0.283***

(1.40) (3.47) (-3.48)

Salesi,t 1.358*** 1.020*** 1.495***

(27.62) (7.65) (31.02)

I(Green)i,t -0.761*** -1.235*** -0.596***

(-18.72) (-11.22) (-14.09)

I(Brown)i,t 1.197*** 1.026*** 1.247***

(17.88) (9.56) (14.43)

Controls Yes Yes Yes

Industry×Year F.E. Yes Yes Yes

Observations 13,715 3,501 10,056

Adj.R2 0.941 0.867 0.954
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Table III: Equity duration and climate change exposure

This table examines the impact of firm-level climate change exposure on equity duration. The
dependent variable is Dur. The regression controls for Size, BM , ROA, Leverage, Sales,
INV , and Beta. All variables are defined in Table A1. Data of climate change exposure is from
Sautner et al. (2023). In the regressions for columns (2), we include industry-year fixed effects.
The industry classification standard is the 48 Fama and French industries. The t-statistics are
reported in the parenthesis below the coefficients. All standard errors are clustered at the firm
level. Statistical significance is denoted by p***<0.01, p**<0.05, p*<0.1. The results are from
the 2005-2020 U.S. sample.

Duri,t+1

Variables (1) (2)

CCExposureOpp
i,t 0.115*** 0.115***

(3.50) (3.95)

CCExposureReg
i,t -0.066*** -0.044**

(-3.05) (-2.02)

CCExposurePhy
i,t -0.019 -0.009

(-0.75) (-0.46)

Emissionsi,t -0.697*** -0.453***

(-7.51) (-4.02)

Controls Yes Yes

Industry×Year F.E. Yes Yes

Observations 12,341 12,304

Adj.R2 0.454 0.538
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Table IV: Carbon emissions, stock returns and equity duration

This table explores the role that duration plays in the relationship between carbon measures and
stock returns. This table conducts the contemporaneous regression of stock returns in t on the
carbon measures in t and lagged control variables. RET is monthly stock return and Adj. RET
is the return adjusted for size, book-to-market, and momentum, according to the methodology
in Daniel et al. (1997). The regression controls for Size, BM , ROA, Leverage, Sales, INV ,
∆EPS, Beta, Momentum and V olatility. All variables are defined in Table A1. I(LongDur) is
an indicator that equals one if Dur is in the top 30% within the cross-section, and zero otherwise.
I(ShortDur) is an indicator that equals one if Dur is in the lowest 30% within the cross-section,
and zero otherwise. All regressions include time fixed effects, and regressions in column (1), (3),
(4) and (6) additionally include industry fixed effects. The industry classification standard is
the 48 Fama and French industries. The t-statistics are reported in the parenthesis below the
coefficients. All standard errors are clustered at the firm and year level. Statistical significance is
denoted by p***<0.01, p**<0.05, p*<0.1. The results are from the 2005 to 2020 U.S. sample.

RETi,t Adj. RETi,t

Variables (1) (2) (3) (4) (5) (6)

Emissionsi,t 0.353*** 0.258* 0.748*** 0.312*** 0.245 0.642***

(3.47) (1.83) (5.35) (3.30) (1.72) (5.25)

I(LongDur)i,t × Emissionsi,t -0.476*** -0.499*** -0.477*** -0.488***

(-6.25) (-6.65) (-6.28) (-5.99)

I(ShortDur)i,t × Emissionsi,t 0.059 0.046 0.083 0.072

(0.66) (0.60) (0.87) (0.73)

I(LongDur)i,t 1.446*** 1.479*** 1.171*** 1.202***

(12.15) (13.55) (14.77) (16.25)

I(ShortDur)i,t -1.901*** -1.879*** -1.676*** -1.661***

(-16.34) (-17.28) (-18.22) (-19.35)

Controls Yes Yes Yes Yes Yes Yes

Industry F.E. Yes No Yes Yes No Yes

Year/month F.E. Yes Yes Yes Yes Yes Yes

Observations 160,850 161,426 160,850 155,845 156,346 155,845

Adj.R2 0.244 0.250 0.251 0.004 0.011 0.012
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Table V: Carbon sorted portfolios and equity duration

This table presents monthly value-weighted raw returns of the carbon-duration portfolios of
unconditional sorts. DGTW-adjusted return is the return adjusted for size, book-to-market, and
momentum, according to the methodology in Daniel et al. (1997). From column (1) to (2), the
sorting variable is equity duration. In Panel A, we calculate the Brown-minus-green (BMG)
portfolio between the portfolios with the highest and lowest carbon emissions. We show BMG
within the shortest duration portfolios in column (1) and the longest duration portfolios in column
(2). Panel B shows the alphas of BMG. We use FF6 factor models (Fama and French, 2018), which
adds a momentum factor to the controls in FF5. We report the results of the time-series regression
with standard errors adjusted for autocorrelation with 12 lags using the Newey-West test (Newey
and West, 1987). The t-statistics are reported in the parenthesis below the coefficients. Statistical
significance is denoted by p***<0.01, p**<0.05, p*<0.1. The results are from the 2005 to 2020
U.S. sample.

Portfolios sorted on duration

Short Long

Panel A. DGTW-adjusted excess return (1) (2)

Portfolios sorted on carbon emissions

1 (Green) 0.073 0.312**

(0.55) (2.38)

2 -0.012 0.186**

(-0.12) (2.35)

3 (Brown) -0.177* -0.055

(-1.91) (-0.84)

BMG -0.250 -0.367***

(-1.27) (-2.78)

Brown-Minus-Green portfolios

Monthly return

Short Long

Panel B. Alphas (1) (2)

α-CAPM -0.265 -0.287**

(-1.09) (-2.24)

R2 -0.004 0.025

Obs. 180 180

α-FF5 -0.289 -0.380***

(-1.53) (-3.93)

R2 0.280 0.477

Obs. 180 180

α-FF5+MOM -0.289 -0.380***

(-1.52) (-3.94)

R2 0.278 0.474

Obs. 180 180
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Table VI: Carbon premium and equity duration: the channel of implied cost of capital
and cash flow expectation

This table conducts the contemporaneous regression of stock returns in t on the interaction terms
of carbon emissions and implied cost of capital, cash flow expectation in t, respectively. RET
is monthly stock return. ICC is the medium of four accounting measures of the implied cost
of capital, according to the methodology in Gebhardt, Lee, and Swaminathan (2001), Claus
and Thomas (2001), Easton (2004) and Ohlson and Juettner-Nauroth (2005). CF Forecast is
calculated as change in EPS forecast scaled by lagged stock price. The regression includes lagged
controls of Size, BM , ROA, Leverage, Sales, INV , ∆EPS, Beta, Momentum and V olatility.
All variables are defined in Table A1. Column (1) and (2) show the results from the sample of
long duration (the top 30% within the cross-section). Column (3) and (4) show the results from
the sample of short duration (the lowest 30% within the cross-section). All regressions include
time fixed effects, and regressions in column (2) and (4) additionally include industry fixed effects.
The industry classification standard is the 48 Fama and French industries. The t-statistics are
reported in the parenthesis below the coefficients. All standard errors are clustered at the firm
and year level. Statistical significance is denoted by p***<0.01, p**<0.05, p*<0.1. The results
are from the 2005 to 2020 U.S. sample.

RETi,t

Long sample Short sample

Variables (1) (2) (3) (4)

Emissionsi,t × ICCi,t -0.273** -0.339*** -0.115 -0.089

(-2.93) (-3.66) (-1.27) (-0.99)

Emissionsi,t × CF Forecasti,t -0.033 -0.060 0.206** 0.212**

(-0.38) (-0.63) (2.17) (2.17)

Emissionsi,t 0.013 0.237 0.282 0.532***

(0.07) (1.35) (1.68) (3.09)

ICCi,t -0.826*** -0.933*** -1.043*** -1.160***

(-6.15) (-6.94) (-8.50) (-8.64)

CF Forecasti,t 0.168 0.159 0.205 0.200

(0.98) (0.95) (0.94) (0.93)

Controls Yes Yes Yes Yes

Industry F.E. No Yes No Yes

Year/month F.E. Yes Yes Yes Yes

Observations 37,677 37,677 40,794 40,770

Adj.R2 0.240 0.241 0.324 0.325
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Table VII: Subsample analysis: carbon emission, implied cost of capital and cash flow
forecast

This table presents the relationship between emissions and implied cost of capital, emissions
and cash flow expectation respectively. The dependent variable in Panel A is ICC, the medium
of four accounting measures of the implied cost of capital, according to the methodology in
Gebhardt, Lee, and Swaminathan (2001), Claus and Thomas (2001), Easton (2004) and Ohlson
and Juettner-Nauroth (2005). The dependent variable in Panel B is CF Forecast, which is
calculated as change in EPS forecast scaled by lagged stock price. Column (1) shows the results
from the sample of long duration (the top 30% within the cross-section) and Column (2) shows the
results from the sample of short duration (the lowest 30% within the cross-section). All regressions
include time fixed effects and industry fixed effects. The regression includes lagged controls of
Size, BM , ROA, Leverage, Sales, INV , ∆EPS, Beta, Momentum and V olatility. All variables
are defined in Table A1. The industry classification standard is the 48 Fama and French industries.
The t-statistics are reported in the parenthesis below the coefficients. All standard errors are
clustered at the firm and year level. Statistical significance is denoted by p***<0.01, p**<0.05,
p*<0.1. The results are from the 2005 to 2020 U.S. sample.

ICCi,t

Long sample Short sample

Panel A. (1) (2)

Emissionsi,t 0.443** 0.498**

(2.70) (2.84)

Controls Yes Yes

Industry F.E. Yes Yes

Year/month F.E. Yes Yes

Observations 37,903 41,188

Adj.R2 0.366 0.257

CF Forecasti,t

Long sample Short sample

Panel B. (1) (2)

Emissionsi,t 1.259*** 0.713**

(3.21) (2.94)

Controls Yes Yes

Industry F.E. Yes Yes

Year/month F.E. Yes Yes

Observations 45,708 41,398

Adj.R2 0.120 0.142
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Table VIII: Robustness analysis: carbon premium and equity duration

This table explores robustness of the role that duration plays in the relationship between carbon
measures and stock returns. Panel A conducts the contemporaneous regression of stock returns
in t on the carbon emissions in t while controlling for contemporaneous sales information. The
regression includes lagged control variables of Size, BM , ROA, Leverage, INV , ∆EPS, Beta,
Momentum and V olatility. Panel B conducts the same regression as Table IV with the sample
including only firm-reported emission data. Panel C conducts the regression of stock returns in
t on the lagged carbon emissions. The regression includes the same lagged control variables as
Panel A, as well as lagged sales information. All variables are defined in Table A1. I(LongDur) is
an indicator that equals one if Dur is in the top 30% within the cross-section, and zero otherwise.
I(ShortDur) is an indicator that equals one if Dur is in the lowest 30% within the cross-section,
and zero otherwise. All regressions include time fixed fixed effects. Column (1) and (3) additionally
include industry fixed effects. The industry classification standard is the 48 Fama and French
industries. The t-statistics are reported in the parenthesis below the coefficients. All standard
errors are clustered at the firm and year level. Statistical significance is denoted by p***<0.01,
p**<0.05, p*<0.1. The results are from the 2005 to 2020 U.S. sample.

RETi,t

Panel A. Controlling for sales information (1) (2) (3)

Emissionsi,t -0.155** 0.002 0.191*

(-2.31) (0.02) (1.96)

I(LongDur)i,t × Emissionsi,t -0.548*** -0.578***

(-6.14) (-6.65)

I(ShortDur)i,t × Emissionsi,t 0.111 0.094

(1.15) (1.05)

I(LongDur)i,t 1.396*** 1.425***

(11.48) (12.98)

I(ShortDur)i,t -1.959*** -1.930***

(-17.65) (-18.25)

Salesi,t 0.563*** 0.970*** 0.995***

(4.50) (5.97) (8.10)

∆Salesi,t 0.526*** 0.485*** 0.477***

(7.17) (6.46) (6.19)

Controls Yes Yes Yes

Industry F.E. Yes No Yes

Year/month F.E. Yes Yes Yes

Observations 160,850 161,426 160,850

Adj.R2 0.246 0.252 0.253
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Table VIII: Robustness analysis: carbon premium and equity duration (cont’)

RETi,t

Panel B. Firm-reported emissions only (1) (2) (3)

Emissionsi,t -0.080 0.072 0.195

(-0.58) (0.57) (1.42)

I(LongDur)i,t × Emissionsi,t -0.436*** -0.505***

(-5.32) (-5.09)

I(ShortDur)i,t × Emissionsi,t 0.042 0.105

(0.47) (1.01)

I(LongDur)i,t 1.217*** 1.294***

(8.34) (9.39)

I(ShortDur)i,t 0.042 0.105

(0.47) (1.01)

Controls Yes Yes Yes

Industry F.E. Yes No Yes

Year/month F.E. Yes Yes Yes

Observations 43,874 44,030 43,874

Adj.R2 0.334 0.338 0.339

RETi,t

Panel C. Forward-looking bias (1) (2) (3)

Emissionsi,t−1 -0.111 -0.040 0.172

(-1.29) (-0.27) (1.56)

I(LongDur)i,t × Emissionsi,t−1 -0.556*** -0.566***

(-6.87) (-7.23)

I(ShortDur)i,t × Emissionsi,t−1 0.171* 0.174**

(1.94) (2.60)

I(LongDur)i,t 1.353*** 1.380***

(11.07) (12.19)

I(ShortDur)i,t -1.885*** -1.871***

(-13.29) (-13.56)

Controls Yes Yes Yes

Industry F.E. Yes No Yes

Year/month F.E. Yes Yes Yes

Observations 145,862 146,390 145,862

Adj.R2 0.255 0.261 0.261
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Table IX: Carbon intensity, stock returns and equity duration

This table explores robustness of the role that duration plays in the relationship between carbon
measures and stock returns. Panel A conducts the contemporaneous regression of stock returns
in t on the carbon emissions in t while controlling for contemporaneous sales information. The
regression includes lagged control variables of Size, BM , ROA, Leverage, INV , ∆EPS, Beta,
Momentum and V olatility. Panel B conducts the same regression as Table IV with the sample
including only firm-reported emission data. Panel C conducts the regression of stock returns in
t on the lagged carbon emissions. The regression includes the same lagged control variables as
Panel A, as well as lagged sales information. All variables are defined in Table A1. I(LongDur)
is an indicator that equals one if Dur is in the top 30% within the cross-section, and zero
otherwise. I(ShortDur) is an indicator that equals one if Dur is in the lowest 30% within the
cross-section, and zero otherwise. All regressions include time fixed fixed effects. Column (1)
and (3) additionally include industry fixed effects. The industry classification standard is the
48 Fama and French industries. Panel B presents monthly value-weighted raw returns of the
intensity-duration portfolios of unconditional sorts. DGTW-adjusted return is the return adjusted
for size, book-to-market, and momentum, according to the methodology in Daniel et al. (1997).
From column (1) to (2), the sorting variable is equity duration. In Panel B, we calculate the
Brown-minus-green (BMG) portfolio between the portfolios with the highest and lowest carbon
intensity. We show BMG within the shortest duration portfolios in column (1) and the longest
duration portfolios in column (2). Panel B shows the alphas of BMG. We use FF6 factor models
(Fama and French, 2018), which adds a momentum factor to the controls in FF5. We report
the results of the time-series regression with standard errors adjusted for autocorrelation with
12 lags using the Newey-West test (Newey and West, 1987). The t-statistics are reported in the
parenthesis below the coefficients. All standard errors are clustered at the firm and year level.
Statistical significance is denoted by p***<0.01, p**<0.05, p*<0.1. The results are from the 2005
to 2020 U.S. sample.

RETi,t

Panel A. Panel regressions (1) (2) (3)

Intensityi,t -0.096*** 0.069 0.168***

(-2.98) (0.98) (3.43)

I(LongDur)i,t × Intensityi,t -0.404*** -0.378***

(-4.64) (-4.16)

I(ShortDur)i,t × Intensityi,t -0.108 -0.109

(-1.22) (-1.50)

I(LongDur)i,t 1.367*** 1.404***

(11.30) (12.59)

I(ShortDur)i,t -1.838*** -1.822***

(-15.51) (-16.13)

Controls Yes Yes Yes

Industry F.E. Yes No Yes

Year/month F.E. Yes Yes Yes

Observations 160,850 161,426 160,850

Adj.R2 0.244 0.250 0.251

49



Table IX: Carbon intensity, stock returns and equity duration (cont’)

Portfolios sorted on duration

Short Long

Panel B. DGTW-adjusted excess return (1) (2)

Portfolios sorted on carbon intensity

1 (Green) -0.033 0.190***

(-0.28) (2.92)

2 -0.107 -0.009

(-1.22) (-0.10)

3 (Brown) -0.234 -0.230**

(-1.32) (-2.23)

BMG -0.201 -0.420***

(-0.84) (-3.09)

Brown-Minus-Green portfolios

Monthly return

Short Long

Panel C. Alphas (1) (2)

α-CAPM -0.208 -0.394***

(-0.76) (-2.70)

R2 -0.005 0.000

Obs. 180 180

α-FF5 -0.121 -0.369**

(-0.51) (-2.59)

R2 0.075 0.079

Obs. 180 180

α-FF5+MOM -0.121 -0.370***

(-0.51) (-2.62)

R2 0.075 0.089

Obs. 180 180
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Appendix

Figure A1: Emission-level sorted carbon intensity

This figure presents the distribution of carbon emission intensity evenly sorted by emis-
sions level. Carbon intensity is the ratio of the total carbon emissions to the year-end
sales. We display the distribution of carbon intensity based on minimum, first quartile
(Q1), median, third quartile (Q3), and maximum. The gray dashed lines represent
the 10th percentile of carbon intensity at the bottom and the 90th percentile of car-
bon intensity at the top. We exclude outside values. Panel A reports the disclosed U.S.
sample. Panel B reports the estimated U.S. sample. The sample period is from 2005 to 2020.

Panel A. Disclosed sample

Panel B. Estimated sample
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Table A1: Variable definitions

Variable Years Definition

Emissions 2005 to 2020 The natural logarithm of total emissions from the sum of

Scope 1 and Scope 2. Source: Trucost.

Intensity 2005 to 2020 The natural logarithm of the ratio of the total emissions from

the sum of Scope 1 and Scope 2 to the year-end sales. Source:

Trucost.

Divergence 2005 to 2020 The absolute difference between the percentiles of a firm’s

total carbon emission level and carbon intensity within each

cross-section. Source: Self-constructed.

Dur 2005 to 2020 Equity duration. Sources: Dechow, Sloan, and Soliman

(2004) and Weber (2018).

RET 2005 to 2020 The monthly stock return. Source: CRSP.

ICC 2005 to 2020 The medium of four accounting measures of the implied cost

of capital, according to the methodology in Gebhardt, Lee,

and Swaminathan (2001), Claus and Thomas (2001), Eas-

ton (2004) and Ohlson and Juettner-Nauroth (2005). Source:

CRSP, I/B/E/S

CF Forecast 2005 to 2020 calculated as change in EPS forecast scaled by lagged stock

price. Source: I/B/E/S

Size 2005 to 2020 The natural logarithm of market capitalization. Source:

CRSP.

BM 2005 to 2020 The book value of equity divided by market value of equity.

Source: CRSP and Compustat.

Continued on next page
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Table A1 – continued from previous page

Variable Years Definition

ROA 2005 to 2020 The ratio of operating income before depreciation to the book

value of total assets. Source: Compustat.

Leverage 2005 to 2020 The ratio of debt (long-term debt plus debt in current liabil-

ities) to the book value of total assets. Source: Compustat.

Sales 2005 to 2020 The natural logarithm of year-end sales. Source: Compustat.

INV 2005 to 2020 The CAPEX divided by book value of asset. Source: Com-

pustat.

∆EPS 2005 to 2020 The natural logarithm of year-by-year growth of EPS. Source:

Compustat.

Beta 2005 to 2020 The CAPM beta calculated over a 60-month rolling window.

Source: CRSP.

Momentum 2005 to 2020 The cumulative stock return over the one-year period. Source:

CRSP.

V olatility 2005 to 2020 The monthly stock return volatility calculated over the one-

year period. Source: CRSP.

∆Sales 2005 to 2020 The natural logarithm of year-by-year growth of sales. Source:

Compustat.

I(Green) 2005 to 2020 The indicator variable set equal to 1 if a firm’s total carbon

emissions are in the lowest 30% within each cross-section, and

0 otherwise. Source: Self-constructed.

I(Brown) 2005 to 2020 The indicator variable set equal to 1 if a firm’s total carbon

emissions are in the highest 30% within each cross-section,

and 0 otherwise. Source: Self-constructed.

Continued on next page
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Table A1 – continued from previous page

Variable Years Definition

I(LongDur) 2005 to 2020 The indicator that equals one if equity duration is in the top

30% within the cross-section, and zero otherwise. Source:

Self-constructed.

Carbon 2005 to 2020 The generic term alternately standing for the natural log-

arithm of total carbon emission level and carbon intensity.

Source: Trucost.

MKT 2005 to 2020 Monthly return on the value-weighted stock market net of the

risk free rate. Source: Fama and French (1993).

SMB 2005 to 2020 The average monthly return on the three small portfolios mi-

nus the average return on the three big portfolios. Source:

Fama and French (1993).

HML 2005 to 2020 The average monthly return on the two value portfolios mi-

nus the average return on the two growth portfolios. Source:

Fama and French (1993).

RMW 2005 to 2020 The difference between the monthly returns on diversified

portfolios of stocks with robust and weak profitability. Source:

Fama and French (2015).

CMA 2005 to 2020 The difference between the returns on diversified portfolios of

the stocks of low and high investment firms. Source: Fama

and French (2015).

MOM 2005 to 2020 Monthly return on the porfolio long 12-month stock winners

and short 12-month past losers. Source: Carhart (1997).

RET 2005 to 2020 Monthly stock return. Source: CRSP

Continued on next page
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Table A1 – continued from previous page

Variable Years Definition

CCExposureOpp 2005 to 2020 Relative frequency with which biagrams that capture oppor-

tunities related to climate change occur in the transcripts of

earnings conference calls. We count the number of such bi-

grams and divide by the total number of bigrams in the tran-

scripts. Source: Sautner et al. (2023)

CCExposureReg 2005 to 2020 Relative frequency with which bigrams that capture regula-

tory shocks related to climate change occur in the transcripts

of earnings conference calls. We count the number of such

bigrams and divide by the total number o f bigrams in the

transcripts. Source: Sautner et al. (2023)

CCExposurePhy 2005 to 2020 Relative frequency with which bigrams that capture physi-

cal shocks related to climate change occur in the transcripts

of earnings conference calls. We count the number of such

bigrams and divide by the total number o f bigrams in the

transcripts. Source: Sautner et al. (2023)
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Table A2: Disclosure distribution within each emission sorted portfolios

This table reports the number distribution of rebalanced decile portfolios sorted on total
carbon emissions in carbon-estimated sample and carbon-disclosed sample. The sample
period covers from 2005 to 2020.

Emission sorted portfolios #Estimated obs. #Disclosed obs. #Total obs.
1 (Green) 1,790 65 1,855

2 1,736 129 1,865
3 1,684 182 1,866
4 1,596 269 1,865
5 1,551 311 1,862
6 1,508 359 1,867
7 1,413 452 1,865
8 1,182 684 1,866
9 984 881 1,865

10 (Brown) 612 1,244 1,856
#Total obs. 14,056 4,576 18,632
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Table A3: Emissions and sales in the disclosed and estimated sample

This table studies the regressions that relate total carbon emission level to firm sales. The
firm-year carbon emission data is from S&P Trucost. The regression controls for Size,
BM , ROA, Leverage, INV and ∆EPS. All variables are defined in Table A1. In column
(1), the results are from the U.S. sample. In column (2), regressions are conducted in the
U.S. subsample where firms report their carbon emissions. In column (3), regressions only
include the U.S. firms with estimated carbon emissions. The sample period covers from
2005 to 2020. The industry classification standard is the 48 Fama and French industries.
All regressions include industry-year fixed effects. The t-statistics are reported in the
parenthesis below the coefficients. All standard errors are clusterd at the firm level.
Statistical significance is denoted by p***<0.01, p**<0.05, p*<0.1.

Emissionsi,t
Full sample Disclosed sample Estimated sample

Variables (1) (2) (3)
Salesi,t 2.065*** 2.005*** 2.072***

(53.80) (15.43) (65.17)
Controls Yes Yes Yes
Industry×Year F.E. Yes Yes Yes
Observations 13,715 3,501 10,056
Adj.R2 0.913 0.793 0.931
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